Xlera8

A reverse-selective ion exchange membrane for the selective transport of phosphates via an outer-sphere complexation–diffusion pathway

  • Duchanois, R. M. et al. Designing polymeric membranes with coordination chemistry for high-precision ion separations. Sci. Adv. 8, eabm9436 (2022).

  • Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).

    CAS 

    Google Scholar
     

  • Luo, T., Abdu, S. & Wessling, M. Selectivity of ion exchange membranes: a review. J. Memb. Sci. 555, 429–454 (2018).

    CAS 

    Google Scholar
     

  • Subramonian, S. & Clifford, D. Monovalent/divalent selectivity and the charge separation concept. React. Polym. Ion Exch. Sorbents 9, 195–209 (1988).

    CAS 

    Google Scholar
     

  • Güler, E., van Baak, W., Saakes, M. & Nijmeijer, K. Monovalent-ion-selective membranes for reverse electrodialysis. J. Memb. Sci. 455, 254–270 (2014).


    Google Scholar
     

  • Ran, J. et al. Ion exchange membranes: new developments and applications. J. Memb. Sci. 522, 267–291 (2017).

    CAS 

    Google Scholar
     

  • DuChanois, R. M. et al. Designing polymeric membranes with coordination chemistry for high-precision ion separations. Sci. Adv. 8, eabm9436 (2022).

    CAS 

    Google Scholar
     

  • DuChanois, R. M., Porter, C. J., Violet, C., Verduzco, R. & Elimelech, M. Membrane materials for selective ion separations at the water–energy nexus. Adv. Mater. 33, 2101312 (2021).

  • Zuo, K. et al. Selective membranes in water and wastewater treatment: role of advanced materials. Mater. Today 50, 516–532 (2021).

    CAS 

    Google Scholar
     

  • Lacan, P., Guizard, C., Le Gall, P., Wettling, D. & Cot, L. Facilitated transport of ions through fixed-site carrier membranes derived from hybrid organic–inorganic materials. J. Memb. Sci. 100, 99–109 (1995).

    CAS 

    Google Scholar
     

  • Paltrinieri, L. et al. Hybrid polyelectrolyte-anion exchange membrane and its interaction with phosphate. React. Funct. Polym. 133, 126–135 (2018).

    CAS 

    Google Scholar
     

  • Li, Y. et al. Facilitated transport of small molecules and ions for energy-efficient membranes. Chem. Soc. Rev. 44, 103–118 (2015).


    Google Scholar
     

  • Ng, L. Y., Mohammad, A. W., Leo, C. P. & Hilal, N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308, 15–33 (2013).

    CAS 

    Google Scholar
     

  • Kim, J. H., Won, J. & Kang, Y. S. Silver polymer electrolytes by π-complexation of silver ions with polymer containing C=C bond and their application to facilitated olefin transport membranes. J. Memb. Sci. 237, 199–202 (2004).

    CAS 

    Google Scholar
     

  • Park, Y. S., Won, J. & Kang, Y. S. Facilitated transport of olefin through solid PAAm and PAAm–graft composite membranes with silver ions. J. Memb. Sci. 183, 163–170 (2001).

    CAS 

    Google Scholar
     

  • Faiz, R. & Li, K. Olefin/paraffin separation using membrane based facilitated transport/chemical absorption techniques. Chem. Eng. Sci. 73, 261–284 (2012).

    CAS 

    Google Scholar
     

  • Wu, H. et al. Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties. J. Memb. Sci. 465, 78–90 (2014).

    CAS 

    Google Scholar
     

  • Cheng, Y. et al. Advanced porous materials in mixed matrix membranes. Adv. Mater. 30, 1802401 (2018).

  • Li, Y. & Chung, T.-S. Novel Ag+-zeolite/polymer mixed matrix membranes with a high CO2/CH4 selectivity. Am. Inst. Chem. Eng. 53, 610–616 (2007).

    CAS 

    Google Scholar
     

  • Zhang, M. et al. Synthesis of porous UiO-66-NH2-based mixed matrix membranes with high stability, flux and separation selectivity for Ga(III). Chem. Eng. J. 421, 129748 (2021).

    CAS 

    Google Scholar
     

  • Li, X., Hill, M. R., Wang, H. & Zhang, H. Metal–organic framework‐based ion‐selective membranes. Adv. Mater. Technol. 6, 2000790 (2021).

  • Zhao, Y. et al. Metal-organic framework based membranes for selective separation of target ions. J. Memb. Sci. 634, 119407 (2021).

    CAS 

    Google Scholar
     

  • Zhang, H. et al. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv. 4, eaaq0066 (2018).


    Google Scholar
     

  • Ramakrishnam Raju, M. V., Harris, S. M. & Pierre, V. C. Design and applications of metal-based molecular receptors and probes for inorganic phosphate. Chem. Soc. Rev. 49, 1090–1108 (2020).

    CAS 

    Google Scholar
     

  • Acelas, N. Y., Martin, B. D., López, D. & Jefferson, B. Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere 119, 1353–1360 (2015).

    CAS 

    Google Scholar
     

  • Pan, B. et al. New strategy to enhance phosphate removal from water by hydrous manganese oxide. Environ. Sci. Technol. 48, 5101–5107 (2014).

    CAS 

    Google Scholar
     

  • Fransiscus, Y., Widi, R. K., Aprilasti, G. O. & Yuharma, M. D. Adsorption of phosphate in aqueous solutions using manganese dioxide. Int. J. Adv. Sci. Eng. Inf. Technol. 8, 818–824 (2018).


    Google Scholar
     

  • Yao, W. & Millero, F. J. Adsorption of phosphate on manganese dioxide in seawater. Environ. Sci. Technol. 30, 536–541 (1996).

    CAS 

    Google Scholar
     

  • Kawashima, M., Tainaka, Y., Hori, T., Koyama, M. & Takamatsu, T. Phosphate adsorption onto hydrous manganese(iv) oxide in the presence of divalent cations. Water Res. 20, 471–475 (1986).

    CAS 

    Google Scholar
     

  • Mustafa, S., Zaman, M. I. & Khan, S. Temperature effect on the mechanism of phosphate anions sorption by β-MnO2. Chem. Eng. J. 141, 51–57 (2008).

    CAS 

    Google Scholar
     

  • Nesbitt, H. W. & Banerjee, D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am. Mineral. 83, 305–315 (1998).

    CAS 

    Google Scholar
     

  • Yang, Z. et al. Vertically-aligned Mn(OH)2 nanosheet films for flexible all-solid-state electrochemical supercapacitors. J. Mater. Sci. Mater. Electron. 28, 17533–17540 (2017).

    CAS 

    Google Scholar
     

  • Parikh, S. J. & Chorover, J. FTIR spectroscopic study of biogenic Mn-oxide formation by Pseudomonas putida GB-1. Geomicrobiol. J. 22, 207–218 (2005).

    CAS 

    Google Scholar
     

  • Wang, X. & Andrews, L. Infrared spectra of M(OH)1,2,3 (M = Mn, Fe, Co, Ni) molecules in solid argon and the character of first row transition metal hydroxide bonding. J. Phys. Chem. A 110, 10035–10045 (2006).

    CAS 

    Google Scholar
     

  • Stenina, I., Golubenko, D., Nikonenko, V. & Yaroslavtsev, A. Selectivity of transport processes in ion-exchange membranes: relationship with the structure and methods for its improvement. Int. J. Mol. Sci. 21, 5517 (2020).

    CAS 

    Google Scholar
     

  • Jashni, E., Hosseini, S. M., Shen, J. N. & Van der Bruggen, B. Electrochemical characterization of mixed matrix electrodialysis cation exchange membrane incorporated with carbon nanofibers for desalination. Ionics 25, 5595–5610 (2019).

    CAS 

    Google Scholar
     

  • Porozhnyy, M., Huguet, P., Cretin, M., Safronova, E. & Nikonenko, V. Mathematical modeling of transport properties of proton-exchange membranes containing immobilized nanoparticles. Int. J. Hydrogen Energy 41, 15605–15614 (2016).

    CAS 

    Google Scholar
     

  • Zhang, B., Gao, H., Xiao, C., Tong, X. & Chen, Y. The trade-off between membrane permselectivity and conductivity: a percolation simulation of mass transport. J. Memb. Sci. 597, 117751 (2020).

    CAS 

    Google Scholar
     

  • Kingsbury, R. S. & Coronell, O. Modeling and validation of concentration dependence of ion exchange membrane permselectivity: significance of convection and Manning’s counter-ion condensation theory. J. Memb. Sci. 620, 118411 (2020).


    Google Scholar
     

  • Kononenko, N. et al. Porous structure of ion exchange membranes investigated by various techniques. Adv. Colloid Interface Sci. 246, 196–216 (2017).

    CAS 

    Google Scholar
     

  • Lopez, M., Kipling, B. & Yeager, H. L. Ionic diffusion and selectivity of a cation exchange membrane in nonaqueous solvents. Anal. Chem. 49, 629–632 (1977).

    CAS 

    Google Scholar
     

  • Rottiers, T., De la Marche, G., Van der Bruggen, B. & Pinoy, L. Co-ion fluxes of simple inorganic ions in electrodialysis metathesis and conventional electrodialysis. J. Memb. Sci. 492, 263–270 (2015).

    CAS 

    Google Scholar
     

  • White, N., Misovich, M., Yaroshchuk, A. & Bruening, M. L. Coating of Nafion membranes with polyelectrolyte multilayers to achieve high monovalent/divalent cation electrodialysis selectivities. ACS Appl. Mater. Interfaces 7, 6620–6628 (2015).

    CAS 

    Google Scholar
     

  • Hosseini, S. M., Jeddi, F., Nemati, M., Madaeni, S. S. & Moghadassi, A. R. Electrodialysis heterogeneous anion exchange membrane modified by PANI/MWCNT composite nanoparticles: preparation, characterization and ionic transport property in desalination. Desalination 341, 107–114 (2014).

    CAS 

    Google Scholar
     

  • Su, Q. et al. Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters. Sci. Total Environ. 407, 5471–5477 (2009).

    CAS 

    Google Scholar
     

  • Pan, B. C. et al. Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion. J. Colloid Interface Sci. 310, 99–105 (2007).

    CAS 

    Google Scholar
     

  • Chat with us

    Hi there! How can I help you?