Xlera8

Artificial-enzymes-armed Bifidobacterium longum probiotics for alleviating intestinal inflammation and microbiota dysbiosis

  • Alatab, S. et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 5, 17–30 (2020).

    Article  Google Scholar 

  • Hoivik, M. L. et al. Health-related quality of life in patients with ulcerative colitis after a 10-year disease course: results from the IBSEN study. Inflamm. Bowel Dis. 18, 1540–1549 (2012).

    Article  Google Scholar 

  • Citi, S. Intestinal barriers protect against disease. Science 359, 1097–1098 (2018).

    Article  CAS  Google Scholar 

  • Turner, J. R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809 (2009).

    Article  CAS  Google Scholar 

  • Chu, H. et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 352, 1116–1120 (2016).

    Article  CAS  Google Scholar 

  • Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    Article  CAS  Google Scholar 

  • Plichta, D. R., Graham, D. B., Subramanian, S. & Xavier, R. J. Therapeutic opportunities in inflammatory bowel disease: mechanistic dissection of host-microbiome relationships. Cell 178, 1041–1056 (2019).

    Article  CAS  Google Scholar 

  • Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  Google Scholar 

  • Grisham, M. B. Oxidants and free radicals in inflammatory bowel disease. Lancet 344, 859–861 (1994).

    Article  CAS  Google Scholar 

  • Dickinson, B. C. & Chang, C. J. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504–511 (2011).

    Article  CAS  Google Scholar 

  • Lee, Y. et al. Hyaluronic acid–bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier microbiome and immune responses in colitis. Nat. Mater. 19, 118–126 (2020).

    Article  CAS  Google Scholar 

  • Scott, B. M. et al. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nat. Med. 27, 1212–1222 (2021).

    Article  CAS  Google Scholar 

  • Bernstein, C. N. et al. World Gastroenterology Organization practice guidelines for the diagnosis and management of IBD in 2010. Inflamm. Bowel Dis. 16, 112–124 (2010).

    Article  Google Scholar 

  • Lautenschläger, C., Schmidt, C., Fischer, D. & Stallmach, A. Drug delivery strategies in the therapy of inflammatory bowel disease. Adv. Drug Deliv. Rev. 71, 58–76 (2014).

    Article  Google Scholar 

  • Cader, M. Z. & Kaser, A. Finding the right target for drug-resistant inflammatory bowel disease. Nat. Med. 27, 1870–1871 (2021).

    Article  CAS  Google Scholar 

  • Suez, J., Zmora, N., Segal, E. & Elinav, E. The pros, cons, and many unknowns of probiotics. Nat. Med. 25, 716–729 (2019).

    Article  CAS  Google Scholar 

  • Motta, J.-P. et al. Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Sci. Transl. Med. 4, 158ra144–158ra144 (2012).

    Article  Google Scholar 

  • Brioukhanov, A. L. & Netrusov, A. I. Aerotolerance of strictly anaerobic microorganisms and factors of defense against oxidative stress: a review. Appl. Biochem. Microbiol. 43, 567–582 (2007).

    Article  CAS  Google Scholar 

  • McCord, J. M., Keele, B. B. Jr. & Fridovich, I. An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc. Natl Acad. Sci. USA 68, 1024–1027 (1971).

    Article  CAS  Google Scholar 

  • Imlay, J. A. How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv. Microb. Physiol. 46, 111–153 (2002).

    Article  CAS  Google Scholar 

  • Tally, F. P., Goldin, B. R., Jacobus, N. V. & Gorbach, S. L. Superoxide dismutase in anaerobic bacteria of clinical significance. Infect. Immun. 16, 20–25 (1977).

    Article  CAS  Google Scholar 

  • Huang, Y., Ren, J. & Qu, X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119, 4357–4412 (2019).

    Article  CAS  Google Scholar 

  • Jiao, L. et al. When nanozymes meet single-atom catalysis. Angew. Chem. Int. Ed. 59, 2565–2576 (2020).

    Article  CAS  Google Scholar 

  • Cao, F. et al. An enzyme-mimicking single-atom catalyst as an efficient multiple reactive oxygen and nitrogen species scavenger for sepsis management. Angew. Chem. Int. Ed. 32, 5108–5115 (2020).

    Article  Google Scholar 

  • Zhang, C. et al. Colonization and probiotic function of Bifidobacterium longum. J. Funct. Foods 53, 157–165 (2019).

    Article  CAS  Google Scholar 

  • Chen, Y. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56, 6937–6941 (2017).

    Article  CAS  Google Scholar 

  • Zhang, H. et al. Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J. Am. Chem. Soc. 139, 14143–14149 (2017).

    Article  CAS  Google Scholar 

  • Pan, Y. et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat. Commun. 10, 4290 (2019).

    Article  Google Scholar 

  • Bull, S. D. et al. Exploiting the reversible covalent bonding of boronic acids: recognition, sensing, and assembly. Acc. Chem. Res. 46, 312–326 (2013).

    Article  CAS  Google Scholar 

  • Geng, W. et al. Click reaction for reversible encapsulation of single yeast cells. ACS Nano 13, 14459–14467 (2019).

    Article  CAS  Google Scholar 

  • Bron, P. A., van Baarlen, P. & Kleerebezem, M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat. Rev. Microbiol. 10, 66–78 (2012).

    Article  CAS  Google Scholar 

  • Hua, S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract-influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharmacol. 11, 524 (2020).

    Article  CAS  Google Scholar 

  • Stillhart, C. et al. Impact of gastrointestinal physiology on drug absorption in special populations––an UNGAP review. Eur. J. Pharm. Sci. 147, 105280 (2020).

    Article  CAS  Google Scholar 

  • Pawar, V. K. et al. Gastroretentive dosage forms: a review with special emphasis on floating drug delivery systems. Drug Deliv. 18, 97–110 (2011).

    Article  CAS  Google Scholar 

  • Wirtz, S., Neufert, C., Weigmann, B. & Neurath, M. F. Chemically induced mouse models of intestinal inflammation. Nat. Protoc. 2, 541–546 (2007).

    Article  CAS  Google Scholar 

  • Liu, Y. et al. Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci. Adv. 6, eabb2695 (2020).

    Article  CAS  Google Scholar 

  • Sokol, H. et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis. 15, 1183–1189 (2009).

    Article  CAS  Google Scholar 

  • Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, R79 (2012).

    Article  CAS  Google Scholar 

  • Manichanh, C. et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55, 205–211 (2006).

    Article  Google Scholar 

  • Wright, E. K. et al. Recent advances in characterizing the gastrointestinal microbiome in Crohn’s disease: a systematic review. Inflamm. Bowel Dis. 21, 1219–1228 (2015).

    Google Scholar 

  • Shang, L. et al. Core altered microorganisms in colitis mouse model: a comprehensive time-point and fecal microbiota transplantation analysis. Antibiotics 10, 643 (2021).

    Article  CAS  Google Scholar 

  • Salem, F. et al. Gut microbiome in chronic rheumatic and inflammatory bowel diseases: similarities and differences. United Eur. Gastroenterol. J. 7, 1008–1032 (2019).

    Article  CAS  Google Scholar 

  • Baldelli, V., Scaldaferri, F., Putignani, L. & Del Chierico, F. The role of enterobacteriaceae in gut microbiota dysbiosis in inflammatory bowel diseases. Microorganisms 9, 697 (2021).

    Article  CAS  Google Scholar 

  • Castellarin, M. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22, 299–306 (2012).

    Article  CAS  Google Scholar 

  • Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298 (2012).

    Article  CAS  Google Scholar 

  • Ziegler, A., Gonzalez, L. & Blikslager, A. Large animal models: the key to translational discovery in digestive disease research. Cell. Mol. Gastroenterol. Hepatol. 2, 716–724 (2016).

    Article  Google Scholar 

  • National Institute of Diabetes and Digestive and Kidney Diseases. Opportunities and Challenges in Digestive Diseases Research: Recommendations of the National Commission on Digestive Diseases. NIH Publication No. 08–6514 (National Institutes of Health, 2009).

  • Chandra, L. et al. Derivation of adult canine intestinal organoids for translational research in gastroenterology. BMC Biol. 17, 33 (2019).

    Article  Google Scholar 

  • Schaefer, K., Rensing, S., Hillen, H., Burkhardt, J. E. & Germann, P. G. Is science the only driver in species selection? An internal study to evaluate compound requirements in the minipig compared to the dog in preclinical studies. Toxicol. Pathol. 44, 474–479 (2016).

    Article  CAS  Google Scholar 

  • Mehrabani, D. et al. The healing effect of Teucrium polium in acetic acid-induced ulcerative colitis in the dog as an animal model. Middle East J. Dig. Dis. 4, 40–47 (2012).

    Google Scholar 

  • Ballal, S. A. et al. Host lysozyme-mediated lysis of Lactococcus lactis facilitates delivery of colitis-attenuating superoxide dismutase to inflamed colons. Proc. Natl Acad. Sci. USA 112, 7803–7808 (2015).

    Article  CAS  Google Scholar 

  • Han, W. et al. Improvement of an experimental colitis in rats by lactic acid bacteria producing superoxide dismutase. Inflamm. Bowel Dis. 12, 1044–1052 (2006).

    Article  Google Scholar 

  • de Moreno de LeBlanc, A. et al. Oral administration of a catalase-producing Lactococcus lactis can prevent a chemically induced colon cancer in mice. J. Med. Microbiol. 57, 100–105 (2008).

    Article  Google Scholar 

  • Liu, M. et al. Oral engineered Bifidobacterium longum expressing rhMnSOD to suppress experimental colitis. Int. Immunopharmacol. 57, 25–32 (2018).

    Article  Google Scholar 

  • LeBlanc, J. G. et al. Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn’s disease in mice. J. Biotechnol. 151, 287–293 (2011).

    Article  CAS  Google Scholar 

  • Zhao, S. et al. An orally administered CeO2@montmorillonite nanozyme targets inflammation for inflammatory bowel disease therapy. Adv. Funct. Mater. 30, 2004692 (2020).

    Article  CAS  Google Scholar 

  • Cheng, C., Zhao, S., Cheng, Y., Liu, Y. & Wei, H. Design of nanozymes for inflammatory bowel disease therapy. Sci. China Life Sci. 64, 1368–1371 (2021).

    Article  CAS  Google Scholar 

  • Wei, H. & Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42, 6060–6093 (2013).

    Article  CAS  Google Scholar 

  • Cheng, C. et al. Multifunctional nanozyme hydrogel with mucosal healing activity for single-dose ulcerative colitis therapy. Bioconjugate Chem. 33, 248–259 (2022).

    Article  CAS  Google Scholar 

  • Lin, S. et al. Mucosal immunity-mediated modulation of the gut microbiome by oral delivery of probiotics into Peyer’s patches. Sci. Adv. 7, eabf0677 (2021).

    Article  CAS  Google Scholar 

  • Anselmo, A. C., McHugh, K. J., Webster, J., Langer, R. & Jaklenec, A. Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Adv. Mater. 28, 9486–9490 (2016).

    Article  CAS  Google Scholar 

  • Zheng, D. W. et al. Prebiotics‐encapsulated probiotic spores regulate gut microbiota and suppress colon cancer. Adv. Mater. 32, 2004529 (2020).

    Article  CAS  Google Scholar 

  • Centurion, F. et al. Nanoencapsulation for probiotic delivery. ACS Nano 15, 18653–18660 (2021).

    Article  CAS  Google Scholar 

  • Chat with us

    Hi there! How can I help you?