Xlera8

Designing single-site alloy catalysts using a degree-of-isolation descriptor

  • Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).

    Article  CAS  Google Scholar 

  • Feng, Q. et al. Isolated single-atom Pd sites in intermetallic nanostructures: high catalytic selectivity for semihydrogenation of alkynes. J. Am. Chem. Soc. 139, 7294–7301 (2017).

    Article  CAS  Google Scholar 

  • Sun, G. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 9, 4454 (2018).

    Article  Google Scholar 

  • Childers, D. J. et al. Modifying structure-sensitive reactions by addition of Zn to Pd. J. Catal. 318, 75–84 (2014).

    Article  CAS  Google Scholar 

  • Nakaya, Y., Hirayama, J., Yamazoe, S., Shimizu, K. I. & Furukawa, S. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nat. Commun. 11, 2838 (2020).

    Article  CAS  Google Scholar 

  • Marcinkowski, M. D. et al. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat. Chem. 10, 325–332 (2018).

    Article  CAS  Google Scholar 

  • Ryan, T. H. et al. First-principles design of a single-atom-alloy propane dehydrogenation catalyst. Science 372, 1444–1447 (2021).

    Article  Google Scholar 

  • Thomas, J. M. The concept, reality and utility of single-site heterogeneous catalysts (SSHCs). Phys. Chem. Chem. Phys. 16, 7647–7661 (2014).

    Article  CAS  Google Scholar 

  • Karamad, M., Tripkovic, V. & Rossmeisl, J. Intermetallic alloys as CO electroreduction catalysts—role of isolated active sites. ACS Catal. 4, 2268–2273 (2014).

    Article  CAS  Google Scholar 

  • Zhang, L., Zhou, M., Wang, A. & Zhang, T. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem. Rev. 120, 683–733 (2019).

    Article  Google Scholar 

  • Han, A. et al. Isolating contiguous Pt atoms and forming Pt–Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nat. Commun. 10, 3787 (2019).

    Article  Google Scholar 

  • Hannagan, R. T., Giannakakis, G., Flytzani-Stephanopoulos, M. & Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 120, 12044–12088 (2020).

    Article  CAS  Google Scholar 

  • Chen, S. et al. Propane dehydrogenation on single-site [PtZn4] intermetallic catalysts. Chem 7, 387–405 (2020).

    Article  Google Scholar 

  • Li, X. et al. Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. Sci. Adv. 6, eabb6833 (2020).

    Article  CAS  Google Scholar 

  • Qin, R., Liu, K., Wu, Q. & Zheng, N. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 120, 11810–11899 (2020).

    Article  CAS  Google Scholar 

  • Pei, G. X. et al. Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New J. Chem. 38, 2043–2051 (2014).

    Article  CAS  Google Scholar 

  • Pei, G. X. et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal. 5, 3717–3725 (2015).

    Article  CAS  Google Scholar 

  • Pei, G. X. et al. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 7, 1491–1500 (2017).

    Article  CAS  Google Scholar 

  • Sattler, J. J., Ruiz-Martinez, J., Santillan-Jimenez, E. & Weckhuysen, B. M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 114, 10613–10653 (2014).

    Article  CAS  Google Scholar 

  • Wang, Y., Hu, P., Yang, J., Zhu, Y. A. & Chen, D. C–H bond activation in light alkanes: a theoretical perspective. Chem. Soc. Rev. 50, 4299–4358 (2021).

    Article  CAS  Google Scholar 

  • Chen, S. et al. Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies. Chem. Soc. Rev. 50, 3315–3354 (2021).

    Article  CAS  Google Scholar 

  • Wang, Y., Hu, Z.-P., Lv, X., Chen, L. & Yuan, Z.-Y. Ultrasmall PtZn bimetallic nanoclusters encapsulated in silicalite-1 zeolite with superior performance for propane dehydrogenation. J. Catal. 385, 61–69 (2020).

    Article  CAS  Google Scholar 

  • Sun, Q. et al. Subnanometer bimetallic platinum–zinc clusters in zeolites for propane dehydrogenation. Angew. Chem. Int. Ed. 59, 19450–19459 (2020).

    Article  CAS  Google Scholar 

  • Rochlitz, L. et al. Silica-supported, narrowly distributed, subnanometric Pt–Zn particles from single sites with high propane dehydrogenation performance. Chem. Sci. 11, 1549–1555 (2020).

    Article  CAS  Google Scholar 

  • Hammer, B. & Nørskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

    Article  CAS  Google Scholar 

  • Zhao, Z.-J. et al. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 4, 792–804 (2019).

    Article  Google Scholar 

  • Miedema, A. R. The electronegativity parameter for transition metals: heat of formation and charge transfer in alloys. J. Less-Common Met. 32, 117–136 (1973).

    Article  CAS  Google Scholar 

  • Nykänen, L. & Honkala, K. Selectivity in propene dehydrogenation on Pt and Pt3Sn surfaces from first principles. ACS Catal. 3, 3026–3030 (2013).

    Article  Google Scholar 

  • Zha, S. et al. Identification of Pt-based catalysts for propane dehydrogenation via a probability analysis. Chem. Sci. 9, 3925–3931 (2018).

    Article  CAS  Google Scholar 

  • Yang, M.-L., Zhu, Y.-A., Zhou, X.-G., Sui, Z.-J. & Chen, D. First-principles calculations of propane dehydrogenation over PtSn catalysts. ACS Catal. 2, 1247–1258 (2012).

    Article  CAS  Google Scholar 

  • Purdy, S. C. et al. Origin of electronic modification of platinum in a Pt3V alloy and its consequences for propane dehydrogenation catalysis. ACS Appl. Energy Mater. 3, 1410–1422 (2020).

    Article  CAS  Google Scholar 

  • Hammer, B. & Nørskov, J. K. Theoretical surface science and catalysis—calculations and concepts. Adv. Catal. 45, 71–129 (2000).

    CAS  Google Scholar 

  • Studt, F. et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320, 1320–1322 (2008).

    Article  CAS  Google Scholar 

  • Mavrikakis, M., Hammer, B. & Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998).

    Article  Google Scholar 

  • Raub, E. & Mahler, W. Alloys of manganese with platinum, iridium, rhodium, and ruthenium. Z. Metallkde 46, 282–290 (1955).

    CAS  Google Scholar 

  • Elezovic, N. R. et al. Synthesis and characterization Pt nanocatalysts on tungsten based supports for oxygen reduction reaction. Appl. Catal. B 125, 390–397 (2012).

    Article  CAS  Google Scholar 

  • Wu, Z. et al. Changes in catalytic and adsorptive properties of 2 nm Pt3Mn nanoparticles by subsurface atoms. J. Am. Chem. Soc. 140, 14870–14877 (2018).

    Article  CAS  Google Scholar 

  • Cai, W. et al. Subsurface catalysis-mediated selectivity of dehydrogenation reaction. Sci. Adv. 4, eaar5418 (2018).

    Article  CAS  Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  • Wellendorff, J. et al. Density functionals for surface science: exchange–correlation model development with Bayesian error estimation. Phys. Rev. B 85, 235149 (2012).

    Article  Google Scholar 

  • Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  • Henkelman, G. & Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999).

    Article  CAS  Google Scholar 

  • Campbell, C. T., Arnadottir, L. & Sellers, J. R. V. Kinetic prefactors of reactions on solid surfaces. Z. Phys. Chem. 227, 1435–1454 (2013).

    Article  CAS  Google Scholar 

  • Bader, R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893–928 (1991).

    Article  CAS  Google Scholar 

  • Maintz, S., Deringer, V. L., Tchougreeff, A. L. & Dronskowski, R. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 37, 1030–1035 (2016).

    Article  CAS  Google Scholar 

  • Dronskowski, R. & Bloechl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).

    Article  CAS  Google Scholar 

  • Dunnington, B. D. & Schmidt, J. R. Generalization of natural bond orbital analysis to periodic systems: applications to solids and surfaces via plane-wave density functional theory. J. Chem. Theory Comput. 8, 1902–1911 (2012).

    Article  CAS  Google Scholar 

  • Chat with us

    Hi there! How can I help you?