Xlera8

Nanopore-based technologies beyond DNA sequencing

  • Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Kasianowicz, J., Walker, B., Krishnasastry, M. & Bayley, H. Genetically engineered pores as metal ion biosensors. MRS Proc. 330, 217–223 (1993).

    Article 

    Google Scholar
     

  • Bayley, H. & Cremer, P. S. Stochastic sensors inspired by biology. Nature 413, 226–230 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W. & Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Ying, Y.-L., Cao, C., Hu, Y.-X. & Long, Y.-T. A single biomolecule interface for advancing the sensitivity, selectivity, and accuracy of sensors. Natl Sci. Rev. 5, 450–452 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Cherf, G. M. et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nat. Biotechnol. 30, 344–348 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Cao, C. et al. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore. Nat. Nanotechnol. 11, 713–718 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Wanunu, M. et al. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 5, 807–814 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Sutherland, T. C. et al. Structure of peptides investigated by nanopore analysis. Nano Lett. 4, 1273–1277 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Movileanu, L., Schmittschmitt, J. P., Scholtz, J. M. & Bayley, H. Interactions of peptides with a protein pore. Biophys. J. 89, 1030–1045 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Movileanu, L., Howorka, S., Braha, O. & Bayley, H. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat. Biotechnol. 18, 1091–1095 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Nir, I., Huttner, D. & Meller, A. Direct sensing and discrimination among ubiquitin and ubiquitin chains using solid-state nanopores. Biophys. J. 108, 2340–2349 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Squires, A., Atas, E. & Meller, A. Nanopore sensing of individual transcription factors bound to DNA. Sci. Rep. 5, 11643 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Ketterer, P. et al. DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex. Nat. Commun. 9, 902 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fisher, P. D. E. et al. A programmable DNA origami platform for organizing intrinsically disordered nucleoporins within nanopore confinement. ACS Nano 12, 1508–1518 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Gilboa, T., Zrehen, A., Girsault, A. & Meller, A. Optically-monitored nanopore fabrication using a focused laser beam. Sci. Rep. 8, 9765 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yamazaki, H., Hu, R., Zhao, Q. & Wanunu, M. Photothermally assisted thinning of silicon nitride membranes for ultrathin asymmetric nanopores. ACS Nano 12, 12472–12481 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Kwok, H., Briggs, K. & Tabard-Cossa, V. Nanopore fabrication by controlled dielectric breakdown. PLoS ONE 9, e92880 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Waugh, M. et al. Solid-state nanopore fabrication by automated controlled breakdown. Nat. Protoc. 15, 122–143 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Xue, L. et al. Solid-state nanopore sensors. Nat. Rev. Mater. 5, 931–951 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Meller, A. Dynamics of polynucleotide transport through nanometre-scale pores. J. Phys. Condens. Matter 15, R581–R607 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Li, M.-Y. et al. Revisiting the origin of nanopore current blockage for volume difference sensing at the atomic level. JACS Au 1, 967–976 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Huo, M.-Z., Li, M.-Y., Ying, Y.-L. & Long, Y.-T. Is the volume exclusion model practicable for nanopore protein sequencing? Anal. Chem. 93, 11364–11369 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Mindell, J. A., Zhan, H., Huynh, P. D., Collier, R. J. & Finkelstein, A. Reaction of diphtheria toxin channels with sulfhydryl-specific reagents: observation of chemical reactions at the single molecule level. Proc. Natl Acad. Sci. USA 91, 5272–5276 (1994).

    CAS 
    Article 

    Google Scholar
     

  • Walker, B., Kasianowicz, J., Krishnasastry, M. & Bayley, H. A pore-forming protein with a metal-actuated switch. Protein Eng. Des. Sel. 7, 655–662 (1994).

    CAS 
    Article 

    Google Scholar
     

  • Boersma, A. J. & Bayley, H. Continuous stochastic detection of amino acid enantiomers with a protein nanopore. Angew. Chem. Int. Ed. 51, 9606–9609 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Ouldali, H. et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 38, 176–181 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Li, M.-Y. et al. Unveiling the heterogenous dephosphorylation of DNA using an aerolysin nanopore. ACS Nano 14, 12571–12578 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Y., Zheng, D., Tan, Q., Wang, M. X. & Gu, L.-Q. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat. Nanotechnol. 6, 668–674 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Galenkamp, N. S., Soskine, M., Hermans, J., Wloka, C. & Maglia, G. Direct electrical quantification of glucose and asparagine from bodily fluids using nanopores. Nat. Commun. 9, 4085 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Burck, N. et al. Nanopore identification of single nucleotide mutations in circulating tumor DNA by multiplexed ligation. Clin. Chem. 67, 753–762 (2021).

    Article 

    Google Scholar
     

  • Wang, Y. et al. Nanolock–nanopore facilitated digital diagnostics of cancer driver mutation in tumor tissue. ACS Sens. 2, 975–981 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Jovanovic-Talisman, T. et al. Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature 457, 1023–1027 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Kowalczyk, S. W. et al. Single-molecule transport across an individual biomimetic nuclear pore complex. Nat. Nanotechnol. 6, 433–438 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Burns, J. R., Seifert, A., Fertig, N. & Howorka, S. A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. Nat. Nanotechnol. 11, 152–156 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Fragasso, A. et al. A designer FG-Nup that reconstitutes the selective transport barrier of the nuclear pore complex. Nat. Commun. 12, 2010 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Bayley, H., Luchian, T., Shin, S.-H. & Steffensen, M. in Single Molecules and Nanotechnology (eds Rigler, R. & Vogel, H.) 251–277 (Springer, 2008).

  • Liu, W., Yang, Z.-L., Yang, C.-N., Ying, Y.-L. & Long, Y.-T. Profiling single-molecule reaction kinetics under nanopore confinement. Chem. Sci. 13, 4109–4114 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Talaga, D. S. & Li, J. Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc. 131, 9287–9297 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Yusko, E. C. et al. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nanotechnol. 6, 253–260 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Oukhaled, G. et al. Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys. Rev. Lett. 98, 158101 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Soskine, M. et al. An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry. Nano Lett. 12, 4895–4900 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Huang, G. et al. Electro-osmotic vortices promote the capture of folded proteins by PlyAB nanopores. Nano Lett. 20, 3819–3827 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Yusko, E. C. et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol. 12, 360–367 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Sha, J. et al. Identification of spherical and nonspherical proteins by a solid-state nanopore. Anal. Chem. 90, 13826–13831 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Rotem, D., Jayasinghe, L., Salichou, M. & Bayley, H. Protein detection by nanopores equipped with aptamers. J. Am. Chem. Soc. 134, 2781–2787 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Thakur, A. K. & Movileanu, L. Real-time measurement of protein–protein interactions at single-molecule resolution using a biological nanopore. Nat. Biotechnol. 37, 96–101 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Wei, R., Gatterdam, V., Wieneke, R., Tampé, R. & Rant, U. Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nat. Nanotechnol. 7, 257–263 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Fahie, M. A., Yang, B., Mullis, M., Holden, M. A. & Chen, M. Selective detection of protein homologues in serum using an OmpG nanopore. Anal. Chem. 87, 11143–11149 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Bell, N. A. W. & Keyser, U. F. Specific protein detection using designed DNA carriers and nanopores. J. Am. Chem. Soc. 137, 2035–2041 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Bell, N. A. W. & Keyser, U. F. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores. Nat. Nanotechnol. 11, 645–651 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Mereuta, L. et al. Slowing down single-molecule trafficking through a protein nanopore reveals intermediates for peptide translocation. Sci. Rep. 4, 3885 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Long, Y. & Zhang, M. Self-assembling bacterial pores as components of nanobiosensors for the detection of single peptide molecules. Sci. China Ser. B 52, 731–733 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Rosen, C. B., Rodriguez-Larrea, D. & Bayley, H. Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nat. Biotechnol. 32, 179–181 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Robertson, J. W. F. et al. Single-molecule mass spectrometry in solution using a solitary nanopore. Proc. Natl Acad. Sci. USA 104, 8207–8211 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Chavis, A. E. et al. Single molecule nanopore spectrometry for peptide detection. ACS Sens. 2, 1319–1328 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Wang, H.-Y., Ying, Y.-L., Li, Y., Kraatz, H.-B. & Long, Y.-T. Nanopore analysis of β-amyloid peptide aggregation transition induced by small molecules. Anal. Chem. 83, 1746–1752 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Huang, G., Willems, K., Soskine, M., Wloka, C. & Maglia, G. Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Nat. Commun. 8, 935 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Niu, H., Li, M.-Y., Ying, Y.-L. & Long, Y.-T. An engineered third electrostatic constriction of aerolysin to manipulate heterogeneously charged peptides transport. Chem. Sci. 13, 2456–2461 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, S. et al. Bottom-up fabrication of a proteasome–nanopore that unravels and processes single proteins. Nat. Chem. 13, 1192–1199 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Piguet, F. et al. Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore. Nat. Commun. 9, 966 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, S., Cao, C., Yang, J. & Long, Y.-T. Detection of peptides with different charges and lengths by using the aerolysin nanopore. ChemElectroChem 6, 126–129 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Restrepo-Pérez, L., Wong, C. H., Maglia, G., Dekker, C. & Joo, C. Label-free detection of post-translational modifications with a nanopore. Nano Lett. 19, 7957–7964 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nivala, J., Marks, D. B. & Akeson, M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore. Nat. Biotechnol. 31, 247–250 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Nivala, J., Mulroney, L., Li, G., Schreiber, J. & Akeson, M. Discrimination among protein variants using an unfoldase-coupled nanopore. ACS Nano 8, 12365–12375 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science 374, 1509–1513 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Yan, S. et al. Single molecule ratcheting motion of peptides in a Mycobacterium smegmatis porin A (MspA) nanopore. Nano Lett. 21, 6703–6710 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Chen, Z. et al. Controlled movement of ssDNA conjugated peptide through Mycobacterium smegmatis porin A (MspA) nanopore by a helicase motor for peptide sequencing application. Chem. Sci. 12, 15750–15756 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, Q., de Zoysa, R. S. S., Wang, D., Jayawardhana, D. A. & Guan, X. Real-time monitoring of peptide cleavage using a nanopore probe. J. Am. Chem. Soc. 131, 6324–6325 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Meng, F.-N., Ying, Y.-L., Yang, J. & Long, Y.-T. A wild-type nanopore sensor for protein kinase activity. Anal. Chem. 91, 9910–9915 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Craig, J. M. et al. Revealing dynamics of helicase translocation on single-stranded DNA using high-resolution nanopore tweezers. Proc. Natl Acad. Sci. USA 114, 11932–11937 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Ching-Wen, H. et al. Engineering a nanopore with co-chaperonin function. Sci. Adv. 1, e1500905 (2021).


    Google Scholar
     

  • Cheley, S., Xie, H. & Bayley, H. A genetically encoded pore for the stochastic detection of a protein kinase. ChemBioChem 7, 1923–1927 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Zernia, S., van der Heide, N. J., Galenkamp, N. S., Gouridis, G. & Maglia, G. Current blockades of proteins inside nanopores for real-time metabolome analysis. ACS Nano 14, 2296–2307 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wang, H. Y., Gu, Z., Cao, C., Wang, J. & Long, Y. T. Analysis of a single α-synuclein fibrillation by the interaction with a protein nanopore. Anal. Chem. 85, 8254–8261 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Soskine, M., Biesemans, A. & Maglia, G. Single-molecule analyte recognition with ClyA nanopores equipped with internal protein adaptors. J. Am. Chem. Soc. 137, 5793–5797 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Galenkamp, N. S., Biesemans, A. & Maglia, G. Directional conformer exchange in dihydrofolate reductase revealed by single-molecule nanopore recordings. Nat. Chem. 12, 481–488 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Galenkamp, N. S. & Maglia, G. Single-molecule sampling of dihydrofolate reductase shows kinetic pauses and an endosteric effect linked to catalysis. ACS Catal. 12, 1228–1236 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Hu, R. et al. Differential enzyme flexibility probed using solid-state nanopores. ACS Nano 12, 4494–4502 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Liu, S.-C., Ying, Y.-L., Li, W.-H., Wan, Y.-J. & Long, Y.-T. Snapshotting the transient conformations and tracing the multiple pathways of single peptide folding using a solid-state nanopore. Chem. Sci. 12, 3282–3289 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Schmid, S., Stömmer, P., Dietz, H. & Dekker, C. Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations. Nat. Nanotechnol. 16, 1244–1250 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Steffensen, M. B., Rotem, D. & Bayley, H. Single-molecule analysis of chirality in a multicomponent reaction network. Nat. Chem. 6, 603–607 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Ramsay, W. J. & Bayley, H. Single-molecule determination of the isomers of d-glucose and d-fructose that bind to boronic acids. Angew. Chem. Int. Ed. 57, 2841–2845 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Lee, J. & Bayley, H. Semisynthetic protein nanoreactor for single-molecule chemistry. Proc. Natl Acad. Sci. USA 112, 13768–13773 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Luchian, T., Shin, S.-H. & Bayley, H. Kinetics of a three-step reaction observed at the single-molecule level. Angew. Chem. Int. Ed. 42, 1926–1929 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Pulcu, G. S. et al. Single-molecule kinetics of growth and degradation of cell-penetrating poly(disulfide)s. J. Am. Chem. Soc. 141, 12444–12447 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Lu, S., Li, W.-W., Rotem, D., Mikhailova, E. & Bayley, H. A primary hydrogen–deuterium isotope effect observed at the single-molecule level. Nat. Chem. 2, 921–928 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Ramsay, W. J., Bell, N. A. W., Qing, Y. & Bayley, H. Single-molecule observation of the intermediates in a catalytic cycle. J. Am. Chem. Soc. 140, 17538–17546 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Kang, X., Gu, L.-Q., Cheley, S. & Bayley, H. Single protein pores containing molecular adapters at high temperatures. Angew. Chem. Int. Ed. 44, 1495–1499 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Luchian, T., Shin, S.-H. & Bayley, H. Single-molecule covalent chemistry with spatially separated reactants. Angew. Chem. Int. Ed. 42, 3766–3771 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Qing, Y., Pulcu, G. S., Bell, N. A. W. & Bayley, H. Bioorthogonal cycloadditions with sub-millisecond intermediates. Angew. Chem. Int. Ed. 57, 1218–1221 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Gu, L.-Q., Cheley, S. & Bayley, H. Electroosmotic enhancement of the binding of a neutral molecule to a transmembrane pore. Proc. Natl Acad. Sci. USA 100, 15498–15503 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Qing, Y., Tamagaki-Asahina, H., Ionescu, S. A., Liu, M. D. & Bayley, H. Catalytic site-selective substrate processing within a tubular nanoreactor. Nat. Nanotechnol. 14, 1135–1142 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Astumian, R. D. Microscopic reversibility as the organizing principle of molecular machines. Nat. Nanotechnol. 7, 684–688 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Qing, Y., Ionescu, S. A., Pulcu, G. S. & Bayley, H. Directional control of a processive molecular hopper. Science 361, 908–912 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Qing, Y. & Bayley, H. Enzymeless DNA base identification by chemical stepping in a nanopore. J. Am. Chem. Soc. 143, 18181–18187 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Hille, B. Channels of Excitable Membranes (Sinauer Associates, 2001).

  • Dekker, P. J. et al. Preprotein translocase of the outer mitochondrial membrane: molecular dissection and assembly of the general import pore complex. Mol. Cell. Biol. 18, 6515–6524 (1998).

    CAS 
    Article 

    Google Scholar
     

  • Terry, L. J. & Wente, S. R. Flexible gates: dynamic topologies and functions for FG nucleoporins in nucleocytoplasmic transport. Eukaryot. Cell 8, 1814–1827 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Driessen, A. J. M. & Nouwen, N. Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77, 643–667 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Baker, T. A. & Sauer, R. T. ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochim. Biophys. Acta Mol. Cell Res. 1823, 15–28 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Delcour, A. H. Electrophysiology of Unconventional Channels and Pores (Springer, 2015).

  • Sugawara, T. et al. Structural basis for pore-forming mechanism of staphylococcal α-hemolysin. Toxicon 108, 226–231 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Wang, S., Ji, Z., Yan, E., Haque, F. & Guo, P. Three-step channel conformational changes common to DNA packaging motors of bacterial viruses T3, T4, SPP1, and phi29. Virology 500, 285–291 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Howorka, S. Building membrane nanopores. Nat. Nanotechnol. 12, 619–630 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Siwy, Z. & Fuliński, A. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 89, 198103 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Hou, X. et al. A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. J. Am. Chem. Soc. 131, 7800–7805 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Xia, F. et al. Gating of single synthetic nanopores by proton-driven DNA molecular motors. J. Am. Chem. Soc. 130, 8345–8350 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Ohmann, A. et al. A synthetic enzyme built from DNA flips 107 lipids per second in biological membranes. Nat. Commun. 9, 2426 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Franceschini, L., Soskine, M., Biesemans, A. & Maglia, G. A nanopore machine promotes the vectorial transport of DNA across membranes. Nat. Commun. 4, 2415 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Bayoumi, M., Nomidis, S. K., Willems, K., Carlon, E. & Maglia, G. Autonomous and active transport operated by an entropic DNA piston. Nano Lett. 21, 762–768 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Spruijt, E., Tusk, S. E. & Bayley, H. DNA scaffolds support stable and uniform peptide nanopores. Nat. Nanotechnol. 13, 739–745 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Kim, S. J. et al. Integrative structure and functional anatomy of a nuclear pore complex. Nature 555, 475–482 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Jovanovic-Talisman, T. & Zilman, A. Protein transport by the nuclear pore complex: simple biophysics of a complex biomachine. Biophys. J. 113, 6–14 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Ananth, A. N. et al. Spatial structure of disordered proteins dictates conductance and selectivity in nuclear pore complex mimics. Elife 7, e31510 (2018).

    Article 

    Google Scholar
     

  • Stanley, G. J. et al. Quantification of biomolecular dynamics inside real and synthetic nuclear pore complexes using time-resolved atomic force microscopy. ACS Nano 13, 7949–7956 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Kelley, S. O. What are clinically relevant levels of cellular and biomolecular analytes? ACS Sens. 2, 193–197 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Rozevsky, Y. et al. Quantification of mRNA expression using single-molecule nanopore sensing. ACS Nano 14, 13964–13974 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Spitzberg, J. D., van Kooten, X. F., Bercovici, M. & Meller, A. Microfluidic device for coupling isotachophoretic sample focusing with nanopore single-molecule sensing. Nanoscale 12, 17805–17811 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Freedman, K. J. et al. Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping. Nat. Commun. 7, 10217 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Tian, K. et al. Single locked nucleic acid-enhanced nanopore genetic discrimination of pathogenic serotypes and cancer driver mutations. ACS Nano 12, 4194–4205 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Zahid, O. K. et al. Solid-state nanopore analysis of human genomic DNA shows unaltered global 5-hydroxymethylcytosine content associated with early-stage breast cancer. Nanomedicine 35, 102407 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Sze, J. Y. Y., Ivanov, A. P., Cass, A. E. G. & Edel, J. B. Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers. Nat. Commun. 8, 1552 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Morin, T. J. et al. A handheld platform for target protein detection and quantification using disposable nanopore strips. Sci. Rep. 8, 14834 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cai, S., Sze, J. Y. Y., Ivanov, A. P. & Edel, J. B. Small molecule electro-optical binding assay using nanopores. Nat. Commun. 10, 1797 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Thakur, A. K. & Movileanu, L. Single-molecule protein detection in a biofluid using a quantitative nanopore sensor. ACS Sens. 4, 2320–2326 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Mathé, J., Visram, H., Viasnoff, V., Rabin, Y. & Meller, A. Nanopore unzipping of individual DNA hairpin molecules. Biophys. J. 87, 3205–3212 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Lucas, F. L. R. et al. Automated electrical quantification of vitamin B1 in a bodily fluid using an engineered nanopore sensor. Angew. Chem. Int. Ed. 60, 22849–22855 (2021).

    CAS 
    Article 

    Google Scholar
     

  • He, L. et al. Digital immunoassay for biomarker concentration quantification using solid-state nanopores. Nat. Commun. 12, 5348 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Rauf, S., Zhang, L., Ali, A., Liu, Y. & Li, J. Label-free nanopore biosensor for rapid and highly sensitive cocaine detection in complex biological fluids. ACS Sens. 2, 227–234 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Rivas, F. et al. Label-free analysis of physiological hyaluronan size distribution with a solid-state nanopore sensor. Nat. Commun. 9, 1037 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Vorobieva, A. A. et al. De novo design of transmembrane β barrels. Science 371, eabc8182 (2021).

    Article 

    Google Scholar
     

  • Shimizu, K. et al. De novo design of a nanopore for single-molecule detection that incorporates a β-hairpin peptide. Nat. Nanotechnol. 17, 67–75 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Thomsen, R. P. et al. A large size-selective DNA nanopore with sensing applications. Nat. Commun. 10, 5655 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fragasso, A. et al. Reconstitution of ultrawide DNA origami pores in liposomes for transmembrane transport of macromolecules. ACS Nano 15, 12768–12779 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wang, J. J. et al. Identification of single amino acid chiral and positional isomers using an electrostatically asymmetric nanopore. J. Am. Chem. Soc. 144, 15072–15078 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Chen, K., Zhu, J., Bošković, F. & Keyser, U. F. Nanopore-based DNA hard drives for rewritable and secure data Storage. Nano Lett. 20, 3754–3760 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Bell, N. A. W. & Keyser, U. F. Digitally encoded DNA nanostructures for multiplexed single-molecule protein sensing with nanopores. Nat. Nanotechnol. 11, 645–651 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Dal Peraro, M. et al. Aerolysin nanopores decode digital information stored in tailored macromolecular analytes. Sci. Adv. 6, eabc2661 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chat with us

    Hi there! How can I help you?