Xlera8

Three-dimensional racetrack memory devices designed from freestanding magnetic heterostructures

  • Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article 

    Google Scholar
     

  • Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Ikeda, S. et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 9, 721–724 (2010).

    Article 

    Google Scholar
     

  • Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Parkin, S. & Yang, S.-H. Memory on the racetrack. Nat. Nanotechnol. 10, 195–198 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Hayashi, M., Thomas, L., Moriya, R., Rettner, C. & Parkin, S. S. P. Current-controlled magnetic domain-wall nanowire shift register. Science 320, 209–211 (2008).

    Article 

    Google Scholar
     

  • Miron, I. M. et al. Fast current-induced domain-wall motion controlled by the Rashba effect. Nat. Mater. 10, 419–423 (2011).

    Article 

    Google Scholar
     

  • Ryu, K.-S., Yang, S.-H., Thomas, L. & Parkin, S. S. P. Chiral spin torque arising from proximity-induced magnetization. Nat. Commun. 5, 3910 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Yang, S.-H., Ryu, K.-S. & Parkin, S. S. P. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10, 221–226 (2015).

    Article 

    Google Scholar
     

  • Mönch, I. et al. Rolled-up magnetic sensor: nanomembrane architecture for in-flow detection of magnetic objects. ACS Nano 5, 7436–7442 (2011).

    Article 

    Google Scholar
     

  • Schöbitz, M. et al. Fast domain wall motion governed by topology and Œrsted fields in cylindrical magnetic nanowires. Phys. Rev. Lett. 123, 217201 (2019).

    Article 

    Google Scholar
     

  • Sanz-Hernández, D. et al. Fabrication, detection, and operation of a three-dimensional nanomagnetic conduit. ACS Nano 11, 11066–11073 (2017).

    Article 

    Google Scholar
     

  • Maurenbrecher, H. et al. Chiral anisotropic magnetoresistance of ferromagnetic helices. Appl. Phys. Lett. 112, 242401 (2018).

    Article 

    Google Scholar
     

  • Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Lu, D. et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Dong, G. et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science 366, 475–479 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Chen, Z. et al. Freestanding crystalline YBa2Cu3O7−x heterostructure membranes. Phys. Rev. Mater. 3, 060801 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Ji, D. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Guan, Y. et al. Ionitronic manipulation of current-induced domain wall motion in synthetic antiferromagnets. Nat. Commun. 12, 5002 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, L. et al. Current-driven magnetic domain-wall logic. Nature 579, 214–218 (2020).

    Article 

    Google Scholar
     

  • Thiaville, A., Rohart, S., Jué, É., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012).

    Article 

    Google Scholar
     

  • Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. S. P. Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8, 527–533 (2013).

    Article 

    Google Scholar
     

  • Hoffmann, A. Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Tian, Y., Ye, L. & Jin, X. Proper scaling of the anomalous Hall effect. Phys. Rev. Lett. 103, 087206 (2009).

    Article 

    Google Scholar
     

  • Berenschot, J. W., Tas, N. R., Jansen, H. V. & Elwenspoek, M. Chemically anisotropic single-crystalline silicon nanotetrahedra. Nanotechnology 20, 475302 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Garg, C., Yang, S. H., Phung, T., Pushp, A. & Parkin, S. S. P. Dramatic influence of curvature of nanowire on chiral domain wall velocity. Sci. Adv. 3, e1602804 (2017).

    Article 

    Google Scholar
     

  • Sheka, D. D. et al. Fundamentals of curvilinear ferromagnetism: statics and dynamics of geometrically curved wires and narrow ribbons. Small 18, 2105219 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. S. P. Current induced tilting of domain walls in high velocity motion along perpendicularly magnetized micron-sized Co/Ni/Co racetracks. Appl. Phys. Expr. 5, 093006 (2012).

    Article 

    Google Scholar
     

  • Boulle, O. et al. Domain wall tilting in the presence of the Dzyaloshinskii-Moriya interaction in out-of-plane magnetized magnetic nanotracks. Phys. Rev. Lett. 111, 217203 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Yang, S.-H., Garg, C. & Parkin, S. S. P. Chiral exchange drag and chirality oscillations in synthetic antiferromagnets. Nat. Phys. 15, 543–548 (2019).


    Google Scholar
     

  • Kum, H.-S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Gu, K. et al. Simple method to obtain large‐size single‐crystalline oxide sheets. Adv. Func. Mater. 30, 2001236 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Chat with us

    Hi there! How can I help you?