Xlera8

Toward predictive engineering of gene circuits

    • Brooks S.M.
    • Alper H.S.

    Applications, challenges, and needs for employing synthetic biology beyond the lab.

    Nat. Commun. 2021; 12: 1390

    • Lawson C.E.
    • et al.

    Common principles and best practices for engineering microbiomes.

    Nat. Rev. Microbiol. 2019; 17: 725-741

    • Keating K.W.
    • Young E.M.

    Synthetic biology for bio-derived structural materials.

    Curr. Opin. Chem. Eng. 2019; 24: 107-114

    • Nielsen A.A.K.
    • et al.

    Genetic circuit design automation.

    Science. 2016; 352: aac7341

    • Becskei A.
    • Serrano L.

    Engineering stability in gene networks by autoregulation.

    Nature. 2000; 405: 590-593

    • Riglar D.T.
    • et al.

    Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation.

    Nat. Biotechnol. 2017; 35: 653-658

    • Certain L.K.
    • et al.

    Using engineered bacteria to characterize infection dynamics and antibiotic effects in vivo.

    Cell Host Microbe. 2017; 22: 263-268

    • Gardner T.S.
    • et al.

    Construction of a genetic toggle switch in Escherichia coli.

    Nature. 2000; 403: 339-342

    • Elowitz M.B.
    • Leibler S.

    A synthetic oscillatory network of transcriptional regulators.

    Nature. 2000; 403: 335-338

    • Danino T.
    • et al.

    A synchronized quorum of genetic clocks.

    Nature. 2010; 463: 326-330

    • Lezia A.
    • et al.

    Design, mutate, screen: multiplexed creation and arrayed screening of synchronized genetic clocks.

    Cell Syst. 2022; 13: 365-375

    • Lu J.
    • et al.

    Advances and challenges in programming pattern formation using living cells.

    Curr. Opin. Chem. Biol. 2022; 68102147

    • Barbier I.
    • et al.

    Engineering synthetic spatial patterns in microbial populations and communities.

    Curr. Opin. Microbiol. 2022; 67102149

    • Tsoi R.
    • et al.

    Metabolic division of labor in microbial systems.

    Proc. Natl. Acad. Sci. 2018; 115: 2526-2531

    • Lindemann S.R.
    • et al.

    Engineering microbial consortia for controllable outputs.

    ISME J. 2016; 10: 2077-2084

    • Wan X.
    • et al.

    Cascaded amplifying circuits enable ultrasensitive cellular sensors for toxic metals.

    Nat. Chem. Biol. 2019; 15: 540-548

    • Chen Y.
    • et al.

    Emergent genetic oscillations in a synthetic microbial consortium.

    Science. 2015; 349: 986-989

    • Daeffler K.N.-M.
    • et al.

    Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation.

    Mol. Syst. Biol. 2017; 13: 923

    • Sexton J.T.
    • Tabor J.J.

    Multiplexing cell–cell communication.

    Mol. Syst. Biol. 2020; 16e9618

    • Dunkelmann D.L.
    • et al.

    A 68-codon genetic code to incorporate four distinct non-canonical amino acids enabled by automated orthogonal mRNA design.

    Nat. Chem. 2021; 13: 1110-1117

    • Tamsir A.
    • et al.

    Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’.

    Nature. 2011; 469: 212-215

    • Wang B.
    • et al.

    Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology.

    Nat. Commun. 2011; 2: 508

    • Xiang Y.
    • et al.

    Scaling up genetic circuit design for cellular computing: advances and prospects.

    Nat. Comput. 2018; 17: 833-853

    • Eling N.
    • et al.

    Challenges in measuring and understanding biological noise.

    Nat. Rev. Genet. 2019; 20: 536-548

    • Elowitz M.B.
    • et al.

    Stochastic gene expression in a single cell.

    Science. 2002; 297: 1183-1186

    • Barbier I.
    • et al.

    Controlling spatiotemporal pattern formation in a concentration gradient with a synthetic toggle switch.

    Mol. Syst. Biol. 2020; 16e9361

    • Fernandez-Rodriguez J.
    • et al.

    Engineering RGB color vision into Escherichia coli.

    Nat. Chem. Biol. 2017; 13: 706-708

    • Gyorgy A.
    • et al.

    Isocost lines describe the cellular economy of genetic circuits.

    Biophys. J. 2015; 109: 639-646

    • Zhang R.
    • et al.

    Winner-takes-all resource competition redirects cascading cell fate transitions.

    Nat. Commun. 2021; 12: 853

    • Butzin N.C.
    • Mather W.H.

    Crosstalk between diverse synthetic protein degradation tags in Escherichia coli.

    ACS Synth. Biol. 2018; 7: 54-62

    • Contreras-Llano L.E.
    • et al.

    Holistic engineering of cell-free systems through proteome-reprogramming synthetic circuits.

    Nat. Commun. 2020; 11: 3138

    • Zhang R.
    • et al.

    Topology-dependent interference of synthetic gene circuit function by growth feedback.

    Nat. Chem. Biol. 2020; 16: 695-701

    • Tan C.
    • et al.

    Emergent bistability by a growth-modulating positive feedback circuit.

    Nat. Chem. Biol. 2009; 5: 842-848

    • Boo A.
    • et al.

    Host-aware synthetic biology.

    Curr. Opin. Syst. Biol. 2019; 14: 66-72

    • Ghatak S.
    • et al.

    The y-ome defines the 35% of Escherichia coli genes that lack experimental evidence of function.

    Nucleic Acids Res. 2019; 47: 2446-2454

    • Shahab R.L.
    • et al.

    A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose.

    Science. 2020; 369: eabb1214

    • Lewis D.D.
    • et al.

    Frequency dependent growth of bacteria in living materials.

    Front. Bioeng. Biotechnol. 2022; 10948483

    • Shin J.
    • et al.

    Programming Escherichia coli to function as a digital display.

    Mol. Syst. Biol. 2020; 16e9401

    • Balagaddé F.K.
    • et al.

    A synthetic Escherichia coli predator-prey ecosystem.

    Mol. Syst. Biol. 2008; 4: 187

    • Endy D.

    Foundations for engineering biology.

    Nature. 2005; 438: 449-453

    • Chan L.Y.
    • et al.

    Refactoring bacteriophage T7.

    Mol. Syst. Biol. 2005; 1: 2005.0018

    • Jayaraman P.
    • et al.

    Blue light-mediated transcriptional activation and repression of gene expression in bacteria.

    Nucleic Acids Res. 2016; 44: 6994-7005

    • Lajoie M.J.
    • et al.

    Genomically recoded organisms expand biological functions.

    Science. 2013; 342: 357-360

    • Rackham O.
    • Chin J.W.

    A network of orthogonal ribosome·mRNA pairs.

    Nat. Chem. Biol. 2005; 1: 159-166

    • Canton B.
    • et al.

    Refinement and standardization of synthetic biological parts and devices.

    Nat. Biotechnol. 2008; 26: 787-793

    • Park Y.
    • et al.

    Precision design of stable genetic circuits carried in highly-insulated E. coli genomic landing pads.

    Mol. Syst. Biol. 2020; 16e9584

    • Wu F.
    • et al.

    Modulation of microbial community dynamics by spatial partitioning.

    Nat. Chem. Biol. 2022; 18: 394-402

    • Lopatkin A.J.
    • Collins J.J.

    Predictive biology: modelling, understanding and harnessing microbial complexity.

    Nat. Rev. Microbiol. 2020; 18: 507-520

    • Del Vecchio D.
    • et al.

    Modular cell biology: retroactivity and insulation.

    Mol. Syst. Biol. 2008; 4: 161

    • Liao C.
    • et al.

    An integrative circuit–host modelling framework for predicting synthetic gene network behaviours.

    Nat. Microbiol. 2017; 2: 1658-1666

    • Peng W.
    • et al.

    Noise reduction facilitated by dosage compensation in gene networks.

    Nat. Commun. 2016; 7: 12959

    • Son H.-I.
    • et al.

    Design patterns for engineering genetic stability.

    Curr. Opin. Biomed. Eng. 2021; 19100297

    • Gillespie D.T.

    A general method for numerically simulating the stochastic time evolution of coupled chemical reactions.

    J. Comput. Phys. 1976; 22: 403-434

    • Song R.
    • et al.

    A cell size- and cell cycle-aware stochastic model for predicting time-dynamic gene network activity in individual cells.

    BMC Syst. Biol. 2015; 9: 91

    • Aoki S.K.
    • et al.

    A universal biomolecular integral feedback controller for robust perfect adaptation.

    Nature. 2019; 570: 533-537

    • Wang S.
    • et al.

    Massive computational acceleration by using neural networks to emulate mechanism-based biological models.

    Nat. Commun. 2019; 10: 4354

    • Raissi M.
    • et al.

    Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations.

    J. Comput. Phys. 2019; 378: 686-707

    • Yazdani A.
    • et al.

    Systems biology informed deep learning for inferring parameters and hidden dynamics.

    PLoS Comput. Biol. 2020; 16e1007575

    • Tsopanoglou A.
    • Jiménez del Val I.

    Moving towards an era of hybrid modelling: advantages and challenges of coupling mechanistic and data-driven models for upstream pharmaceutical bioprocesses.

    Curr. Opin. Chem. Eng. 2021; 32100691

    • Chen J.
    • et al.

    High throughput flow cytometry based yeast two-hybrid array approach for large-scale analysis of protein-protein interactions.

    Cytometry A. 2012; 81: 90-98

    • Nolan J.P.
    • Mandy F.

    Multiplexed and microparticle-based analyses: quantitative tools for the large-scale analysis of biological systems.

    Cytometry A. 2006; 69: 318-325

    • Eason R.G.
    • et al.

    Characterization of synthetic DNA bar codes in Saccharomyces cerevisiae gene-deletion strains.

    Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 11046-11051

    • Watanabe N.
    • et al.

    Detection of pathogenic bacteria in the blood from sepsis patients using 16S rRNA gene amplicon sequencing analysis.

    PLoS ONE. 2018; 13e0202049

    • Johnson J.S.
    • et al.

    Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis.

    Nat. Commun. 2019; 10: 5029

    • Frieda K.L.
    • et al.

    Synthetic recording and in situ readout of lineage information in single cells.

    Nature. 2017; 541: 107-111

    • Schmidt F.
    • et al.

    Transcriptional recording by CRISPR spacer acquisition from RNA.

    Nature. 2018; 562: 380-385

    • Sheth R.U.
    • et al.

    Multiplex recording of cellular events over time on CRISPR biological tape.

    Science. 2017; 358: 1457-1461

  • Chat with us

    Hi there! How can I help you?