Xlera8

Fluorescence-amplified nanocrystals in the second near-infrared window for in vivo real-time dynamic multiplexed imaging – Nature Nanotechnology

  • Lu, L. & Zhang, F. A deep tissue optical sensing. Nat. Nanotechnol. 17, 566–568 (2022).

    Article  CAS  Google Scholar 

  • Huang, J. et al. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat. Mater. 18, 1133–1143 (2019).

    Article  CAS  Google Scholar 

  • Shuhendler, A. J. et al. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat. Biotechnol. 32, 373–380 (2014).

    Article  CAS  Google Scholar 

  • Akemann, W. et al. Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat. Methods 7, 643–649 (2010).

    Article  CAS  Google Scholar 

  • Germain, R. N. et al. A decade of imaging cellular motility and interaction dynamics in the immune system. Science 336, 1676–1681 (2012).

    Article  CAS  Google Scholar 

  • Ellenbroek, S. I. J. & van Rheenen, J. Imaging hallmarks of cancer in living mice. Nat. Rev. Cancer 14, 406–418 (2014).

    Article  CAS  Google Scholar 

  • Harney, A. S. et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage–derived VEGFA. Cancer Discov. 5, 932–943 (2015).

    Article  CAS  Google Scholar 

  • Beura, L. K. et al. Intravital mucosal imaging of CD8+ resident memory T cells shows tissue-autonomous recall responses that amplify secondary memory. Nat. Immunol. 19, 173–182 (2018).

    Article  CAS  Google Scholar 

  • Damisah, E. C. et al. A fluoro-Nissl dye identifies pericytes as distinct vascular mural cells during in vivo brain imaging. Nat. Neurosci. 20, 1023–1032 (2017).

    Article  CAS  Google Scholar 

  • Gonzales, A. L. et al. Contractile pericytes determine the direction of blood flow at capillary junctions. Proc. Natl Acad. Sci. USA 117, 27022–27033 (2020).

    Article  CAS  Google Scholar 

  • Hartmann, D. A. et al. Brain capillary pericytes exert a substantial but slow influence on blood flow. Nat. Neurosci. 24, 633–645 (2021).

    Article  CAS  Google Scholar 

  • Hofer, S. B. et al. Differential connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex. Nat. Neurosci. 14, 1045–1052 (2011).

    Article  CAS  Google Scholar 

  • Knopfel, T. Genetically encoded optical indicators for the analysis of neuronal circuits. Nat. Rev. Neurosci. 13, 687–700 (2012).

    Article  Google Scholar 

  • Mehlenbacher, R. D. et al. Nanomaterials for in vivo imaging of mechanical forces and electrical fields. Nat. Rev. Mater. 3, 17080 (2018).

    Article  CAS  Google Scholar 

  • Hontani, Y. et al. Multicolor three-photon fluorescence imaging with single-wavelength excitation deep in mouse brain. Sci. Adv. 7, eabf3531 (2021).

    Article  CAS  Google Scholar 

  • Horton, N. G. et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photon. 7, 205–209 (2013).

    Article  CAS  Google Scholar 

  • Liu, H. J. et al. In vivo deep-brain structural and hemodynamic multiphoton microscopy enabled by quantum dots. Nano Lett. 19, 5260–5265 (2019).

    Article  CAS  Google Scholar 

  • Xu, H. et al. Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat. Neurosci. 10, 549–551 (2007).

    Article  CAS  Google Scholar 

  • Hong, G. et al. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).

    Article  CAS  Google Scholar 

  • Bruns, O. T. et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 1, 0056 (2017).

    Article  CAS  Google Scholar 

  • Chang, B. et al. A phosphorescent probe for in vivo imaging in the second near-infrared window. Nat. Biomed. Eng. 6, 629–639 (2022).

    Article  CAS  Google Scholar 

  • Bandi, V. G. et al. Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines. Nat. Methods 19, 353–358 (2022).

    Article  CAS  Google Scholar 

  • Jia, Q. et al. Orthogonal near-infrared-II imaging enables spatially distinguishing tissues based on lanthanide-doped nanoprobes. Anal. Chem. 92, 14762–14768 (2020).

    Article  CAS  Google Scholar 

  • Ortgies, D. H. et al. Lifetime-encoded infrared-emitting nanoparticles for in vivo multiplexed imaging. ACS Nano 12, 4362–4368 (2018).

    Article  CAS  Google Scholar 

  • Fan, Y. et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 13, 941–946 (2018).

    Article  CAS  Google Scholar 

  • Zhong, Y. et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 37, 1322–1331 (2019).

    Article  CAS  Google Scholar 

  • Cosco, E. D. et al. Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time. Nat. Chem. 12, 1123–1130 (2020).

    Article  CAS  Google Scholar 

  • Cosco, E. D. et al. Bright chromenylium polymethine dyes enable fast, four-color in vivo imaging with shortwave infrared detection. J. Am. Chem. Soc. 143, 6836–6846 (2021).

    Article  CAS  Google Scholar 

  • Fan, Y. & Zhang, F. A new generation of NIR-II probes: lanthanide-based nanocrystals for bioimaging and biosensing. Adv. Opt. Mater. 7, 1801417 (2019).

    Article  Google Scholar 

  • Wang, F. & Liu, X. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130, 5642–5643 (2008).

    Article  CAS  Google Scholar 

  • Zhong, Y. et al. Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm. Nat. Commun. 8, 737 (2017).

    Article  Google Scholar 

  • Suyver, J., Aebischer, A., García-Revilla, S., Gerner, P. & Güdel, H. Anomalous power dependence of sensitized upconversion luminescence. Phys. Rev. B 71, 125123 (2005).

    Article  Google Scholar 

  • Liu, Y. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229–233 (2017).

    Article  Google Scholar 

  • Shi, R. & Mudring, A. V. Phonon-mediated nonradiative relaxation in Ln3+-doped luminescent nanocrystals. ACS Mater. Lett. 4, 1882–1903 (2022).

    Article  CAS  Google Scholar 

  • Quintanilla, M. et al. Cubic versus hexagonal—phase, size and morphology effects on the photoluminescence quantum yield of NaGdF4:Er3+/Yb3+ upconverting nanoparticles. Nanoscale 14, 1492–1504 (2022).

    Article  CAS  Google Scholar 

  • Shen, Z. et al. An artery-specific fluorescent dye for studying neurovascular coupling. Nat. Methods 9, 273–276 (2012).

    Article  CAS  Google Scholar 

  • Hill, R. A. et al. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87, 95–110 (2015).

    Article  CAS  Google Scholar 

  • Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    Article  CAS  Google Scholar 

  • Kreisel, D. et al. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc. Natl Acad. Sci. USA 107, 18073–18078 (2010).

    Article  CAS  Google Scholar 

  • Stark, K. et al. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat. Immunol. 14, 41–51 (2013).

    Article  CAS  Google Scholar 

  • Ng, L. G. et al. Visualizing the neutrophil response to sterile tissue injury in mouse dermis reveals a three-phase cascade of events. J. Invest. Dermatol. 131, 2058–2068 (2011).

    Article  CAS  Google Scholar 

  • Lim, K. et al. In situ neutrophil efferocytosis shapes T cell immunity to influenza infection. Nat. Immunol. 21, 1046–1057 (2020).

    Article  CAS  Google Scholar 

  • Justicia, C. et al. Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats. J. Cereb. Blood Flow. Metab. 23, 1430–1440 (2003).

    Article  CAS  Google Scholar 

  • Schmid, M. C. et al. Integrin CD11b activation drives anti-tumor innate immunity. Nat. Commun. 9, 5379 (2018).

    Article  CAS  Google Scholar 

  • Li, M. et al. Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy. Nat. Commun. 11, 1126 (2020).

    Article  CAS  Google Scholar 

  • LaFleur, M. W. et al. PTPN2 regulates the generation of exhausted CD8+ T cell subpopulations and restrains tumor immunity. Nat. Immunol. 20, 1335–1347 (2019).

    Article  CAS  Google Scholar 

  • Hyun, Y. M. et al. Uropod elongation is a common final step in leukocyte extravasation through inflamed vessels. J. Exp. Med. 209, 1349–1362 (2012).

    Article  CAS  Google Scholar 

  • Lim, K. et al. Neutrophil trails guide influenza-specific CD8+ T cells in the airways. Science 349, aaa4352 (2015).

    Article  Google Scholar 

  • Hong, G. et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat. Commun. 5, 4206 (2014).

    Article  CAS  Google Scholar 

  • Chat with us

    Hi there! How can I help you?