Xlera8

Metasurface optofluidics for dynamic control of light fields

  • Squires, T. M. & Quake, S. R. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Sackmann, E. K., Fulton, A. L. & Beebe, D. J. The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Chin, C. D., Linder, V. & Sia, S. K. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12, 2118–2134 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Günther, A. & Jensen, K. F. Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip 6, 1487–1503 (2006).

    Article 

    Google Scholar
     

  • Psaltis, D., Quake, S. R. & Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Monat, C., Domachuk, P. & Eggleton, B. J. Integrated optofluidics: a new river of light. Nat. Photon. 1, 106–114 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Schmidt, H. & Hawkins, A. R. The photonic integration of non-solid media using optofluidics. Nat. Photon. 5, 598–604 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Song, C. & Tan, S. H. A perspective on the rise of optofluidics and the future. Micromachines 8, 152 (2017).

    Article 

    Google Scholar
     

  • Genevet, P., Capasso, F., Aieta, F., Khorasaninejad, M. & Devlin, R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139–152 (2017).

    Article 

    Google Scholar
     

  • Wu, P. C. et al. Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface. Adv. Opt. Mater. 5, 1600938 (2017).

    Article 

    Google Scholar
     

  • Zhang, W. et al. Microfluid-based soft metasurface for tunable optical activity in THz wave. Opt. Express 29, 8786–8795 (2021).

    Article 

    Google Scholar
     

  • Tokuda, Y., Iwasaki, S., Sato, Y., Nakanishi, Y. & Koike, H. Ubiquitous display for dynamically changing environments. In CHI03 Extended Abstracts on Human Factors in Computing Systems 976–977 (ACM, 2003).

  • Chen, H. W., Lee, J. H., Lin, B. Y., Chen, S. & Wu, S. T. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light Sci. Appl. 7, 17168 (2018).

  • Comiskey, B., Albert, J. D., Yoshizawa, H. & Jacobson, J. J. An electrophoretic ink for all-printed reflective electronic displays. Nature 394, 253–255 (1998).

    CAS 
    Article 

    Google Scholar
     

  • Hayes, R. A. & Feenstra, B. J. Video-speed electronic paper based on electrowetting. Nature 425, 383–385 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Heikenfeld, J. et al. Electrofluidic displays using Young–Laplace transposition of brilliant pigment dispersions. Nat. Photon. 3, 292–296 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Feenstra, B. J. et al. A video-speed reflective display based on electrowetting: principle and properties. J. Soc. Inf. Disp. 12, 293–299 (2004).

    Article 

    Google Scholar
     

  • Cao, L., Fan, P., Barnard, E. S., Brown, A. M. & Brongersma, M. L. Tuning the color of silicon nanostructures. Nano Lett. 10, 2649–2654 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Neder, V., Luxembourg, S. L. & Polman, A. Efficient colored silicon solar modules using integrated resonant dielectric nanoscatterers. Appl. Phys. Lett. 111, 073902 (2017).

    Article 

    Google Scholar
     

  • Yang, W. et al. All-dielectric metasurface for high-performance structural color. Nat. Commun. 11, 1864 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Kristensen, A. et al. Plasmonic colour generation. Nat. Rev. Mater. 2, 16088 (2016).

    Article 

    Google Scholar
     

  • Huo, P. et al. Photorealistic full-color nanopainting enabled by a low-loss metasurface. Optica 7, 1171–1172 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14, 227–231 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Holsteen, A. L., Lin, D., Kauvar, I., Wetzstein, G. & Brongersma, M. L. A light-field metasurface for high-resolution single-particle tracking. Nano Lett. 19, 2267–2271 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Engheta, N., Salandrino, A. & Alù, A. Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Phys. Rev. Lett. 95, 95504 (2005).

    Article 

    Google Scholar
     

  • Joo, W. et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science 370, 459–463 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Sun, S. et al. Real-time tunable colors from micro fluidic reconfigurable all-dielectric metasurfaces. ACS Nano 12, 2151–2159 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Komar, A. et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals. Appl. Phys. Lett. 110, 071109 (2017).

    Article 

    Google Scholar
     

  • Zou, C. et al. Electrically tunable transparent displays for visible light based on dielectric metasurfaces. ACS Photon. 6, 1533–1540 (2019).

  • Li, S.-Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Komar, A. et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces. ACS Photon. 5, 1742–1748 (2018).

  • Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141–1143 (2002).


    Google Scholar
     

  • Kerker, M., Wang, D. & Giles, C. L. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765–767 (1983).

    Article 

    Google Scholar
     

  • Person, S. et al. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett. 13, 1806–1809 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Liu, W. & Kivshar, Y. S. Generalized Kerker effects in nanophotonics and meta-optics [Invited]. Opt. Express 26, 13085–13105 (2018).


    Google Scholar
     

  • Pfeiffer, C. & Grbic, A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110, 197401 (2013).

    Article 

    Google Scholar
     

  • Decker, M. et al. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3, 813–820 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Yu, Y. F. et al. High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photon. Rev. 9, 412–418 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Sauvan, C., Hugonin, J. P., Maksymov, I. S. & Lalanne, P. Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys. Rev. Lett. 110, 237401 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Auguié, B. & Barnes, W. L. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101, 143902 (2008).

    Article 

    Google Scholar
     

  • Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Bhushan, B., Hansford, D. & Lee, K. K. Surface modification of silicon and polydimethylsiloxane surfaces with vapor-phase-deposited ultrathin fluorosilane films for biomedical nanodevices. J. Vac. Sci. Technol. A 24, 1197 (2006).

  • Mahadik, D. B. et al. Effect of concentration of trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ) silylating agents on surface free energy of silica aerogels. J. Colloid Interface Sci. 356, 298–302 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Thorsen, T. Microfluidic large-scale integration. Science 298, 580–584 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Sell, D., Yang, J., Doshay, S., Zhang, K. & Fan, J. A. Visible light metasurfaces based on single-crystal silicon. ACS Photon. 3, 1919–1925 (2016).

  • Longwell, S. AcqPack. GitHub https://github.com/FordyceLab/AcqPack (2017).

  • Gerver, R. E. et al. Programmable microfluidic synthesis of spectrally encoded microspheres. Lab Chip 12, 4716–4723 (2012).

  • Edelstein, A. D. et al. Advanced methods of microscope control using μManager software. J. Biol. Methods 1, e10 (2014).

    Article 

    Google Scholar
     

  • Chat with us

    Hi there! How can I help you?