Xlera8

Targeting Xkr8 via nanoparticle-mediated in situ co-delivery of siRNA and chemotherapy drugs for cancer immunochemotherapy

  • Birge, R. B. et al. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ. 23, 962–978 (2016).

    Article  CAS  Google Scholar 

  • Kumar, S., Calianese, D. & Birge, R. B. Efferocytosis of dying cells differentially modulate immunological outcomes in tumor microenvironment. Immunol. Rev. 280, 149–164 (2017).

    Article  CAS  Google Scholar 

  • Nagata, S., Suzuki, J., Segawa, K. & Fujii, T. Exposure of phosphatidylserine on the cell surface. Cell Death Differ. 23, 952–961 (2016).

    Article  CAS  Google Scholar 

  • Hankins, H. M., Baldridge, R. D., Xu, P. & Graham, T. R. Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic 16, 35–47 (2015).

    Article  CAS  Google Scholar 

  • Suzuki, J., Denning, D. P., Imanishi, E., Horvitz, H. R. & Nagata, S. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science 341, 403–406 (2013).

    Article  CAS  Google Scholar 

  • Suzuki, J., Imanishi, E. & Nagata, S. Xkr8 phospholipid scrambling complex in apoptotic phosphatidylserine exposure. Proc. Natl Acad. Sci. USA 113, 9509–9514 (2016).

    Article  CAS  Google Scholar 

  • Huang, Q. et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat. Med. 17, 860–866 (2011).

    Article  CAS  Google Scholar 

  • Sakuragi, T., Kosako, H. & Nagata, S. Phosphorylation-mediated activation of mouse Xkr8 scramblase for phosphatidylserine exposure. Proc. Natl Acad. Sci. USA 116, 2907–2912 (2019).

    Article  CAS  Google Scholar 

  • Ravichandran, K. S. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J. Exp. Med. 207, 1807–1817 (2010).

    Article  CAS  Google Scholar 

  • Hochreiter-Hufford, A. & Ravichandran, K. S. Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a008748 (2013).

  • Kang, T. H. et al. Annexin A5 as an immune checkpoint inhibitor and tumor-homing molecule for cancer treatment. Nat. Commun. https://doi.org/10.1038/s41467-020-14821-z (2020).

  • Chang, W., Fa, H., Xiao, D. & Wang, J. Targeting phosphatidylserine for cancer therapy: prospects and challenges. Theranostics 10, 9214–9229 (2020).

    Article  CAS  Google Scholar 

  • Thorpe, P. E. Targeting anionic phospholipids on tumor blood vessels and tumor cells. Thromb. Res. 125, S134–S137 (2010).

    Article  Google Scholar 

  • Sun, A. & Benet, L. Z. Late-stage failures of monoclonal antibody drugs: a retrospective case study analysis. Pharmacology 105, 145–163 (2020).

    Article  CAS  Google Scholar 

  • Shin, S. A., Moon, S. Y., Park, D., Park, J. B. & Lee, C. S. Apoptotic cell clearance in the tumor microenvironment: a potential cancer therapeutic target. Arch. Pharm. Res 42, 658–671 (2019).

    Article  CAS  Google Scholar 

  • Zhang, R., Song, X.-Q., Liu, R.-P., Ma, Z.-Y. & Xu, J.-Y. Fuplatin: an efficient and low-toxic dual-prodrug. J. Med. Chem. 62, 4543–4554 (2019).

    Article  CAS  Google Scholar 

  • Li, M., Schlesiger, S., Knauer, S. K. & Schmuck, C. A tailor-made specific anion-binding motif in the side chain transforms a tetrapeptide into an efficient vector for gene delivery. Angew. Chem. 127, 2984–2987 (2015).

    Article  Google Scholar 

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  Google Scholar 

  • Li, M. et al. Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy. Carbohydr. Polym. 251, 117103 (2021).

    Article  CAS  Google Scholar 

  • Mattheolabakis, G., Milane, L., Singh, A. & Amiji, M. M. Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J. Drug Target 23, 605–618 (2015).

    Article  CAS  Google Scholar 

  • Luo, Z., Dai, Y. & Gao, H. Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharm. Sin. B 9, 1099–1112 (2019).

    Article  Google Scholar 

  • Qhattal, H. S., Hye, T., Alali, A. & Liu, X. Hyaluronan polymer length, grafting density, and surface poly(ethylene glycol) coating influence in vivo circulation and tumor targeting of hyaluronan-grafted liposomes. ACS Nano 8, 5423–5440 (2014).

    Article  CAS  Google Scholar 

  • Teng, C. et al. Desirable PEGylation for improving tumor selectivity of hyaluronic acid-based nanoparticles via low hepatic captured, long circulation times and CD44 receptor-mediated tumor targeting. Nanomedicine 24, 102105 (2020).

    Article  CAS  Google Scholar 

  • Subhan, M. A., Yalamarty, S. S. K., Filipczak, N., Parveen, F. & Torchilin, V. P. Recent advances in tumor targeting via EPR effect for cancer treatment. J. Pers Med. https://doi.org/10.3390/jpm11060571 (2021).

  • Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    Article  CAS  Google Scholar 

  • Griffioen, A. W. et al. CD44 is involved in tumor angiogenesis; an activation antigen on human endothelial cells. Blood 90, 1150–1159 (1997).

    Article  CAS  Google Scholar 

  • Auerbach, R., Akhtar, N., Lewis, R. L. & Shinners, B. L. Angiogenesis assays: problems and pitfalls. Cancer Metastasis Rev. 19, 167–172 (2000).

    Article  CAS  Google Scholar 

  • Vojtek, M. et al. Fast and reliable ICP-MS quantification of palladium and platinum-based drugs in animal pharmacokinetic and biodistribution studies. Anal. Methods 12, 4806–4812 (2020).

    Article  CAS  Google Scholar 

  • Kumar, V. et al. Pharmacokinetics and biodistribution of polymeric micelles containing miRNA and small-molecule drug in orthotopic pancreatic tumor-bearing mice. Theranostics 8, 4033–4049 (2018).

    Article  CAS  Google Scholar 

  • Wang, H. & Guo, P. Radiolabeled RNA nanoparticles for highly specific targeting and efficient tumor accumulation with favorable in vivo biodistribution. Mol. Pharm. 18, 2924–2934 (2021).

    Article  CAS  Google Scholar 

  • Vocelle, D., Chan, C. & Walton, S. P. Endocytosis controls siRNA efficiency: implications for siRNA delivery vehicle design and cell-specific targeting. Nucleic Acid Ther. 30, 22–32 (2020).

    Article  CAS  Google Scholar 

  • Dong, Y., Siegwart, D. J. & Anderson, D. G. Strategies, design, and chemistry in siRNA delivery systems. Adv. Drug Deliv. Rev. 144, 133–147 (2019).

    Article  CAS  Google Scholar 

  • Song, W. et al. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat. Commun. 9, 2237 (2018).

    Article  Google Scholar 

  • Lima, L. G., Chammas, R., Monteiro, R. Q., Moreira, M. E. & Barcinski, M. A. Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cancer Lett. 283, 168–175 (2009).

    Article  CAS  Google Scholar 

  • Sharma, R., Huang, X., Brekken, R. A. & Schroit, A. J. Detection of phosphatidylserine-positive exosomes for the diagnosis of early-stage malignancies. Br. J. Cancer 117, 545–552 (2017).

    Article  CAS  Google Scholar 

  • Proto, J. D. et al. Regulatory T cells promote macrophage efferocytosis during inflammation resolution. Immunity 49, 666–677 e666 (2018).

    Article  CAS  Google Scholar 

  • Qi, L. et al. IL-10 secreted by M2 macrophage promoted tumorigenesis through interaction with JAK2 in glioma. Oncotarget 7, 71673–71685 (2016).

    Article  Google Scholar 

  • Gray, M. J. et al. Phosphatidylserine-targeting antibodies augment the anti-tumorigenic activity of anti-PD-1 therapy by enhancing immune activation and downregulating pro-oncogenic factors induced by T-cell checkpoint inhibition in murine triple-negative breast cancers. Breast Cancer Res. 18, 50 (2016).

    Article  Google Scholar 

  • Snyder, A. G. et al. Intratumoral activation of the necroptotic pathway components RIPK1 and RIPK3 potentiates antitumor immunity. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aaw2004 (2019).

  • Liu, Y., Hardie, J., Zhang, X. & Rotello, V. M. Effects of engineered nanoparticles on the innate immune system. Semin. Immunol. 34, 25–32 (2017).

    Article  CAS  Google Scholar 

  • Kawano, M. & Nagata, S. Lupus-like autoimmune disease caused by a lack of Xkr8, a caspase-dependent phospholipid scramblase. Proc. Natl Acad. Sci. USA 115, 2132–2137 (2018).

    Article  CAS  Google Scholar 

  • Li, S. et al. Effect of immune response on gene transfer to the lung via systemic administration of cationic lipidic vectors. Am. J. Physiol. 276, 796–804 (1999).

    Google Scholar 

  • Chen, Y. et al. An immunostimulatory dual-functional nanocarrier that improves cancer immunochemotherapy. Nat. Commun. 7, 1–12 (2016).

    Article  Google Scholar 

  • Shum, K. & Rossi, J. J. SiRNA Delivery Methods: Methods and Protocols (Humana Press, 2016).

  • Sun, J. et al. A prodrug micellar carrier assembled from polymers with pendant farnesyl thiosalicylic acid moieties for improved delivery of paclitaxel. Acta Biomater. 43, 282–291 (2016).

    Article  CAS  Google Scholar 

  • Tseng, W., Leong, X. & Engleman, E. Orthotopic mouse model of colorectal cancer. J. Vis. Exp. https://doi.org/10.3791/484 (2007).

  • Raymond, C. K., Roberts, B. S., Garrett-Engele, P., Lim, L. P. & Johnson, J. M. Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA 11, 1737–1744 (2005).

    Article  CAS  Google Scholar 

  • Lynch, R. W. et al. An efficient method to isolate Kupffer cells eliminating endothelial cell contamination and selective bias. J. Leukoc. Biol. 104, 579–586 (2018).

    Article  CAS  Google Scholar 

  • Gorgun, C. et al. Isolation and flow cytometry characterization of extracellular-vesicle subpopulations derived from human mesenchymal stromal cells. Curr. Protoc. Stem Cell Biol. 48, e76 (2019).

    Article  Google Scholar 

  • Ray, A. & Dittel, B. N. Isolation of mouse peritoneal cavity cells. J. Vis. Exp. https://doi.org/10.3791/1488 (2010).

  • Horuluoglu, B. H., Kayraklioglu, N., Tross, D. & Klinman, D. PAM3 protects against DSS-induced colitis by altering the M2:M1 ratio. Sci. Rep. 10, 6078 (2020).

    Article  CAS  Google Scholar 

  • Turnis, M. E. et al. Interleukin-35 limits anti-tumor immunity. Immunity 44, 316–329 (2016).

    Article  CAS  Google Scholar 

  • Chat with us

    Hi there! How can I help you?