Three-dimensional topological magnetic monopoles and their interactions in a ferromagnetic meta-lattice

Date:

  • Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).

    Article  CAS  Google Scholar 

  • Donnelly, C. et al. Three-dimensional magnetization structures revealed with X-ray vector nanotomography. Nature 547, 328–331 (2017).

    Article  CAS  Google Scholar 

  • Tatara, G. & Nakabayashi, N. Emergent spin electromagnetism induced by magnetization textures in the presence of spin–orbit interaction. J. Appl. Phys. 115, 172609 (2014).

    Article  Google Scholar 

  • Zou, J., Zhang, S. & Tserkovnyak, Y. Topological transport of deconfined hedgehogs in magnets. Phys. Rev. Lett. 125, 267201 (2020).

    Article  CAS  Google Scholar 

  • Yu, X. et al. Real-space observation of topological defects in extended skyrmion-strings. Nano Lett. 20, 7313–7320 (2020).

    Article  CAS  Google Scholar 

  • Pietilä, V. & Möttönen, M. Creation of Dirac monopoles in spinor Bose–Einstein condensates. Phys. Rev. Lett. 103, 030401 (2009).

    Article  Google Scholar 

  • Ray, M. W., Ruokokoski, E., Kandel, S., Möttönen, M. & Hall, D. S. Observation of Dirac monopoles in a synthetic magnetic field. Nature 505, 657–660 (2014).

    Article  CAS  Google Scholar 

  • Kanazawa, N. et al. Critical phenomena of emergent magnetic monopoles in a chiral magnet. Nat. Commun. 7, 11622 (2016).

    Article  CAS  Google Scholar 

  • Donnelly, C. et al. Experimental observation of vortex rings in a bulk magnet. Nat. Phys. 17, 316–321 (2021).

    Article  CAS  Google Scholar 

  • Im, M.-Y. et al. Dynamics of the Bloch point in an asymmetric permalloy disk. Nat. Commun. 10, 593 (2019).

    Article  Google Scholar 

  • Abo, G. S. et al. Definition of magnetic exchange length. IEEE Trans. Magn. 49, 4937–4939 (2013).

    Article  CAS  Google Scholar 

  • Han, J. E. & Crespi, V. H. Abrupt topological transitions in the hysteresis curves of ferromagnetic metalattices. Phys. Rev. Lett. 89, 197203 (2002).

    Article  CAS  Google Scholar 

  • Liu, Y. et al. Confined chemical fluid deposition of ferromagnetic metalattices. Nano Lett. 18, 546–552 (2018).

    Article  CAS  Google Scholar 

  • Phatak, C., Petford-Long, A. K. & De Graef, M. Three-dimensional study of the vector potential of magnetic structures. Phys. Rev. Lett. 104, 253901 (2010).

    Article  Google Scholar 

  • Phatak, C., Heinonen, O., De Graef, M. & Petford-Long, A. K. Nanoscale skyrmions in a nonchiral metallic multiferroic: Ni2MnGa. Nano Lett. 16, 4141–4148 (2016).

    Article  CAS  Google Scholar 

  • Davis, T. J., Janoschka, D., Dreher, P. & Frank, B. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 368, eaba6415 (2020).

    Article  CAS  Google Scholar 

  • Streubel, R. et al. Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies. Nat. Commun. 6, 1–11 (2015).

    Article  Google Scholar 

  • Stöhr, J. & Siegmann, H. C. Magnetism: From Fundamentals to Nanoscale Dynamics 1st edn (Springer, 2006).

  • Donnelly, C. et al. Time-resolved imaging of three-dimensional nanoscale magnetization dynamics. Nat. Nanotechnol. 15, 356–360 (2020).

    Article  CAS  Google Scholar 

  • Hierro-Rodriguez, A. et al. Revealing 3D magnetization of thin films with soft X-ray tomography: magnetic singularities and topological charges. Nat. Commun. 11, 6382 (2020).

    Article  CAS  Google Scholar 

  • Witte, K. et al. From 2D STXM to 3D imaging: soft X-ray laminography of thin specimens. Nano Lett. 20, 1305–1314 (2020).

    Article  CAS  Google Scholar 

  • Josten, E. et al. Curvature-mediated spin textures in magnetic multi-layered nanotubes. Preprint at https://arxiv.org/abs/2103.13310 (2021).

  • Donnelly, C. et al. Complex free-space magnetic field textures induced by three-dimensional magnetic nanostructures. Nat. Nanotechnol. 17, 136–142 (2022).

    Article  CAS  Google Scholar 

  • Hermosa-Muñoz, J. et al. 3D magnetic configuration of ferrimagnetic multilayers with competing interactions visualized by soft X-ray vector tomography. Commun. Phys. 5, 26 (2022).

    Article  Google Scholar 

  • Tripathi, A. et al. Dichroic coherent diffractive imaging. Proc. Natl Acad. Sci. USA 108, 13393–13398 (2011).

    Article  CAS  Google Scholar 

  • Chen, C. T., Sette, F., Ma, Y. & Modesti, S. Soft-X-ray magnetic circular dichroism at the L2,3 edges of nickel. Phys. Rev. B 42, 7262–7265 (1990).

    Article  CAS  Google Scholar 

  • Maiden, A., Johnson, D. & Li, P. Further improvements to the ptychographical iterative engine. Optica 4, 736–745 (2017).

    Article  Google Scholar 

  • Volovik, G. E. Linear momentum in ferromagnets. J. Phys. C 20, L83–L87 (1987).

    Article  Google Scholar 

  • Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article  CAS  Google Scholar 

  • Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 1–15 (2017).

    Article  Google Scholar 

  • Jain, A. K., Murty, M. N. & Flynn, P. J. Data clustering: a review. ACM Comput. Surv. 31, 264–323 (1999).

    Article  Google Scholar 

  • Streubel, R. et al. Magnetism in curved geometries. J. Phys. D 49, 363001 (2016).

    Article  Google Scholar 

  • Vitelli, V. & Turner, A. M. Anomalous coupling between topological defects and curvature. Phys. Rev. Lett. 93, 215301 (2004).

    Article  Google Scholar 

  • Bayaraa, T., Xu, C. & Bellaiche, L. Magnetization compensation temperature and frustration-induced topological defects in ferrimagnetic antiperovskite Mn4N. Phys. Rev. Lett. 127, 217204 (2021).

    Article  CAS  Google Scholar 

  • Miao, J., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342 (1999).

    Article  CAS  Google Scholar 

  • Miao, J., Ishikawa, T., Robinson, I. K. & Murnane, M. Beyond crystallography: diffractive imaging using coherent X-ray light sources. Science 348, 530–535 (2015).

    Article  CAS  Google Scholar 

  • Rodenburg, J. M. et al. Hard-X-ray lensless imaging of extended objects. Phys. Rev. Lett. 98, 34801 (2007).

    Article  CAS  Google Scholar 

  • Thibault, P. et al. High-resolution scanning X-ray diffraction microscopy. Science 321, 379–382 (2008).

    Article  CAS  Google Scholar 

  • Watanabe, R. et al. Extension of size of monodisperse silica nanospheres and their well-ordered assembly. J. Colloid Interface Sci. 360, 1–7 (2011).

    Article  CAS  Google Scholar 

  • Russell, J. L., Noel, G. H., Warren, J. M., Tran, N.-L. L. & Mallouk, T. E. Binary colloidal crystal films grown by vertical evaporation of silica nanoparticle suspensions. Langmuir 33, 10366–10373 (2017).

    Article  CAS  Google Scholar 

  • Mahale, P. et al. Oxide-free three-dimensional germanium/silicon core–shell metalattice made by high-pressure confined chemical vapor deposition. ACS Nano 14, 12810–12818 (2020).

    Article  CAS  Google Scholar 

  • Regan, T. J. et al. Chemical effects at metal/oxide interfaces studied by X-ray-absorption spectroscopy. Phys. Rev. B 64, 214422 (2001).

    Article  Google Scholar 

  • Lambers, E. C. et al. Room-temperature oxidation of Ni(110) at low and atmospheric oxygen pressures. Oxid. Met. 45, 301–321 (1996).

    Article  CAS  Google Scholar 

  • Shapiro, D. A. et al. An ultrahigh-resolution soft X-ray microscope for quantitative analysis of chemically heterogeneous nanomaterials. Sci. Adv. 6, eabc4904 (2020).

  • Eisebitt, S. et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888 (2004).

    Article  CAS  Google Scholar 

  • Marchesini, S. et al. SHARP: a distributed GPU-based ptychographic solver. J. Appl. Crystallogr. 49, 1245–1252 (2016).

    Article  CAS  Google Scholar 

  • Goldstein, R. M., Zebker, H. A. & Werner, C. L. Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci. 23, 713–720 (1988).

    Article  Google Scholar 

  • McNaught, A.D. and Wilkinson, A. Compendium of Chemical Terminology 2nd edn (International Union of Pure and Applied Chemistry, 1997).

  • Yang, Y. et al. Determining the three-dimensional atomic structure of an amorphous solid. Nature 592, 60–64 (2021).

    Article  CAS  Google Scholar 

  • Hannon, J. P., Trammell, G. T., Blume, M. & Gibbs, D. X-ray resonance exchange scattering. Phys. Rev. Lett. 61, 1245 (1988).

    Article  CAS  Google Scholar 

  • Scott, M. C. et al. Electron tomography at 2.4-ångström resolution. Nature 483, 444–447 (2012).

    Article  CAS  Google Scholar 

  • Chen, C.-C. et al. Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature 496, 74–77 (2013).

    Article  CAS  Google Scholar 

  • Pham, M., Yuan, Y., Rana, A., Miao, J. & Osher, S. RESIRE: Accurate tomography with real space iterative reconstruction. Preprint at https://doi.org/10.21203/rs.3.rs-2223879/v1 (2022).

  • Yuan, Y. et al. Three-dimensional atomic packing in amorphous solids with liquid-like structure. Nat. Mater. 21, 95–102 (2022).

    Article  CAS  Google Scholar 

  • Scheres, S. H. W. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).

    Article  CAS  Google Scholar 

  • Gilbert, T. L. A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 40, 3443–3449 (2004).

    Article  CAS  Google Scholar 

  • Evans, R. F. L. et al. Atomistic spin model simulations of magnetic nanomaterials. J. Phys. Condens. Matter 26, 103202 (2014).

    Article  CAS  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img

    Latest Intelligence

    spot_img

    Latest Intelligence

    spot_img